

Novel agents/Tandem CARs

Stephen J. Schuster, M.D.

University of Pennsylvania, Philadelphia, PA, USA

Naples, March 21-22, 2024

Grand Hotel Santa Lucia

President: P.L. Zinzani

Disclosures of Prof. Stephen J. Schuster

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						х	
AstraZeneca						х	
BeiGene						х	
Caribou Biotech						x	Steering committee
Fate Therapeutics							Safety DSMB
Genentech/Roche	х					х	Steering committee
Genmab	x					х	Steering committee
Incyte/Morphosys						х	Honoraria for presentation
Kite Pharmaceuticals						х	
Legend Biotech						х	Steering committee
Novartis						х	Steering committee
Mustang Biotech						х	
Nordic Nanovector						х	Steering committee
Takeda							Honoraria for presentation

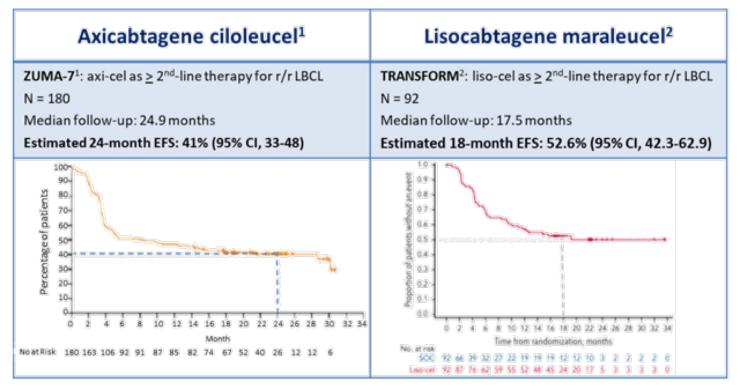
Approved CAR T products as > 3rd-line therapy for large B-cell lymphomas

- Roughly 1/3 of patients with relapsed or refractory large B-cell lymphomas achieve long-term remissions with commercially available CAR-T products as > 3rd-line therapy
- About 2/3 of patients fail to achieve durable responses as > 3rd-line therapy

Axicabtagene ciloleucel ¹	Tisagenlecleucel ²	Lisocabtagene maraleucel ³					
<pre>ZUMA-1¹: axi-cel as ≥ 3rd-line therapy for LBCL N = 101 Median follow-up: 63.1 months <u>Estimated 5-year EFS: 30.3% (95% Cl, 21.5-39.6)</u></pre>	JULIET ² : tisa-cel as > 3rd-line therapy for LBCL N = 115 Median follow-up: 40·3 months <u>Estimated 40-month PFS: ~30%</u>	<pre>TRANSCEND³: liso-cel as ≥ 3rd-line therapy LBCL N = 257 Median follow-up: 23.9 months Estimated 24-month PFS: 40.6% (95% CI, 34.0-47.2)</pre>					
100 100 100 100 100 100 100 100	(1) (1) (1) (1) (1) (1) (1) (1)	$100 - \frac{1}{100} + \frac{1}{100} $					

*The studies summarized above differ in their designs, patient characteristics and follow-up; therefore, direct comparisons are precluded.

¹Neelapu SS, et al. Blood 2023; 141(19):2307-2315; ²Schuster SJ, et al. Lancet Oncol 2021;22(10):1403-1415; ³Abramson J, et al. Blood 2024;143(5):404-416.

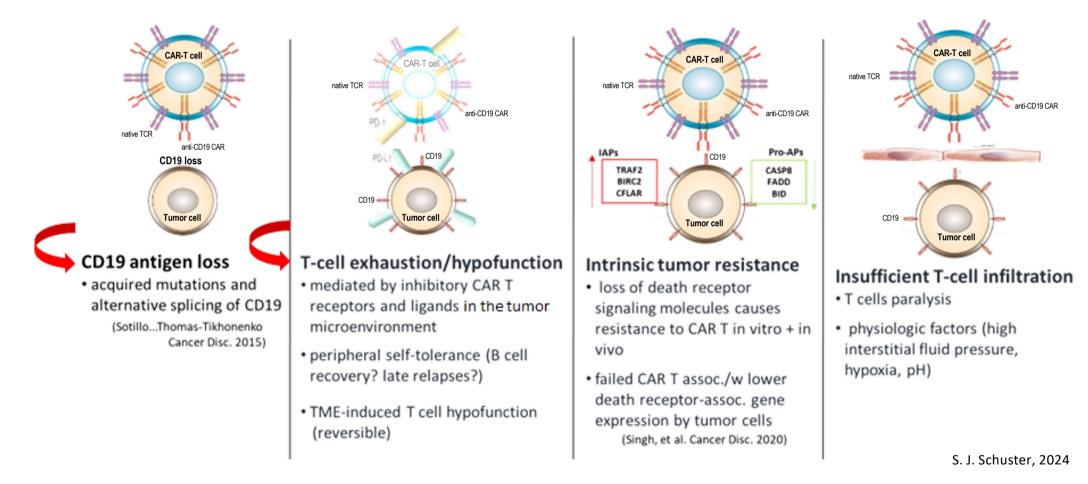

Approved CAR T products as 2nd-line therapy for large B-cell lymphomas

Naples,

March 21-22, 2024

• Earlier administration of CAR-T as 2nd-line of therapy may provide an additional ~10% EFS benefit

8th POSTGRADUATE



*The studies summarized above differ in their designs, patient characteristics and follow-up; therefore, direct comparisons are precluded.

¹Locke FL, et al. N Engl J Med. 2022;386(7):640-654; ²Abramson, et al. Blood. 2023; 141(14):1675-1684.

Putative mechanisms of resistance to CD19-directed CAR-T cells in large B-cell lymphomas

8th POSTGRADUATE

CD19 antigen loss-mediated resistance to CD19-directed CAR-T cells

oblem
ANDINE TOR MID-CO19 CAR
CD19 loss

8th POSTGRADUATE

P

CD19 antigen loss

 acquired mutations and alternative splicing of CD19 (Sotillo...Thomas-Tikhonenko Cancer Disc. 2015)

Potential Solutions

- 1. Manufacture <u>CAR-T cells with dual specificity</u> to target more than one tumor antigen (*i.e.*, "bispecific" CAR-T cell)
 - a) bicistronic CARs on a single cell's surface
 - b) tandem scFv as a single CAR on a single cell's surface
- 2. <u>Coadministration of monospecific CAR-T</u> cell products, each CAR-T with different tumor antigen specificities (so-called, "cocktail" approach)
 - a) sequential administration
 - b) simultaneous coadministration
- 3. <u>Combine T cell-engaging bispecific antibodies</u> (BsAb) and monospecific CAR-T cells, with each product, BsAb and CAR-T, having different tumor antigen specificities

CD19 antigen loss-mediated resistance to CD19-directed CAR-T cells

CD19 loss or downregulation: early CTL019 efficacy and CD19 expression data from Penn and CHOP
 Penn and CHOP Data
 CR rate and CD19 loss at failure

Disease	N	CD19 loss at PD
ALL ¹	30	3/7
FL + DLBCL ²	28	1/5
CLL ³	14	0/10

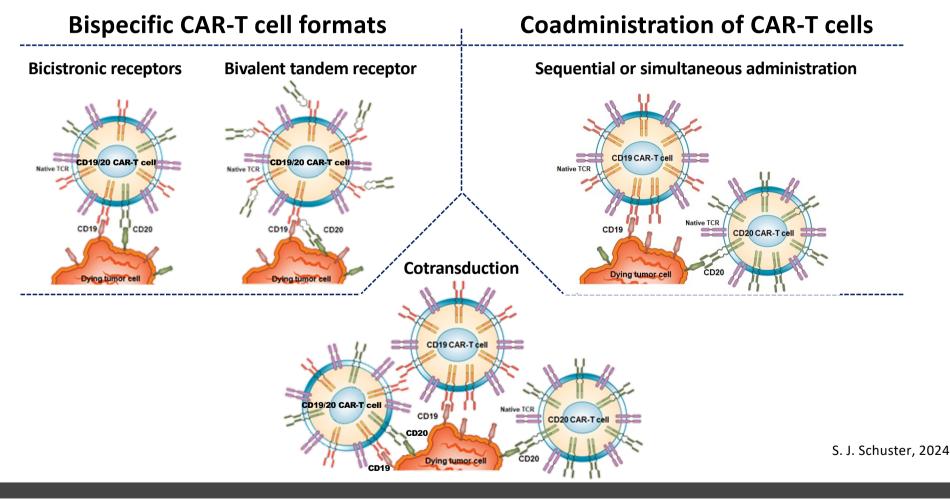
8th POSTGRADUATE

100% 81% 50% 43% 57% 20% 29% 0% ALL FL + DLBCL CLL % CR % CD19 loss

Naples,

March 21-22, 2024

• More responsive diseases seem more likely to fail due to CD19 loss


• Less responsive diseases, like CLL, require alternative explanations

¹Maude S, et al. NEJM. 2014; 371(16): 1507-1517; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, personal communication, 2018 Mar 12.

Dual antigen targeting CAR-T approaches

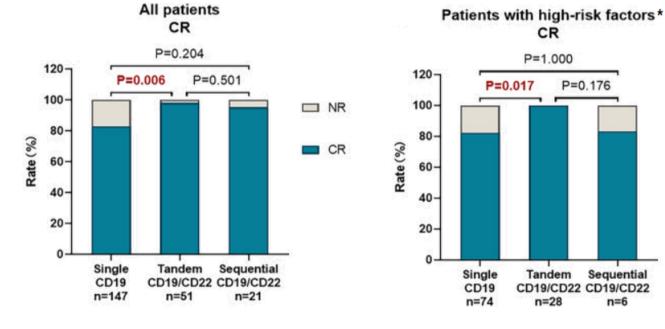
8th POSTGRADUATE

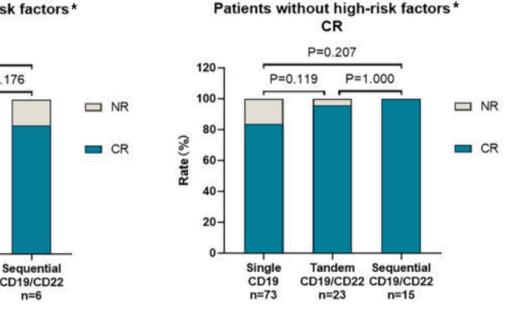
Dual antigen targeting CAR-T approaches

8th POSTGRADUATE

• 8 Phase 1/2, single-arm, noncomparative, prospective, open-label clinical trials

	Study	CAR targets	CAR design	N (% DLBCL)	Prior CAR-T	Prior transplant	LD chemo	C/	AR T cell dose	Response (OR/CR)	PFS - median - rate	Follow-up - median
Г	Zhang, et al. ¹	CD19/CD22	bispecific	32 (84%)	No	Auto, 4 (12.5%)	FC	3.7-32.8	x 10 ⁸ total	79%/ 34%	6.8 mo. 40%, 12-mo .	8.7 mo.
	Wei, et al. ²	CD19/CD22	bispecific, tandem	16 (81%)	No	Auto, 1 (5%)	FC	4.9-9.4	< 10 ⁶ ∕kg	87%/ 62%	8.1 mo. 40%, 24-mo.	13 mo.
CD19/CD22	Roddie, et al. ³	CD19/CD22	bispecific, bicistronic	52 (69%)	No	Auto, 16 (31%)	FC	50-450	< 10 ⁶ total	66%/ 49%	3.3 mo. 26%, 12-mo.	21.6 mo.
	Spiegel, et al. ⁴	CD19/CD22	bispecific, tandem	21 (64%)	No	Auto, 4 (19%)	FC	1.0-3.0	< 10 ⁶ ∕kg	62%/ 29%	3.2 mo. ~23%, 12-mo.	10 mo.
	Wang, et al.⁵	CD19 + CD22	cocktail	38 (60%)	No	Auto, 6 (15.8%)	FC		.1 +/- 2.1 x 10 ⁶ /kg .3 +/- 2.4 x 10 ⁶ /kg	72%/ 50%	9.9 mo. 50%, 12-mo.	14.4 mo.
Γ	Zhang, et al. ⁶	CD19/CD20	bispecific, tandem	87 (66%)	9 (10%)	Auto, 12 (14%)	FC	0.5-8 x 2	10 ⁶ /kg	78%/ 70%	27.6 mo. 61%, 12-mo .	27.7 mo.
CD19/CD20 -	Shah, et al. ⁷	CD19/CD20	bispecific, tandem	16 (56%)	1 (6%)	Auto, 5 (31%); Allo, 1 (6%)	FC	2.5 x 10	⁵ /kg	82%/ 64%	44%, 24-mo.	31 mo.
	Sang, et al. ⁸	CD19 + CD20	cocktail	21 (100%)	No	Auto, 1 (5%)	FC (n=19) or ifosfamide		.2-4.0 x 10 ⁶ /kg .1-4.0 x 10 ⁶ /kg	81% /52%	5.0 mos. ~ 24%, 12-mo.	6.6 mo.
	Summary			283				<u>></u> 12-mo PFS rate, median (range) 40% = (23-61)			= (23-61)	


¹Zhang, *et al*. Front Oncol 2021;11:664421; ²Wei, *et al*. Cancer Immunol Res 2021;9(9):1061–1070; ³Roddie, *et al*. Blood 2023; 141(20):2470-2482; ⁴Spiegel, *et al*. Nat Med 2021;27(8):1419–1431; ⁵Wang, *et al*. Blood 2020;135(1):17–27; ⁶Zhang, *et al*. Leukemia 2022;36(1):189–196; ⁷Shah, *et al*. Am J Hematol 2022;97(12):1580–1588; ⁸Sang, *et al*. Cancer Med 2020;9(16):5827–5838.



Dual antigen targeting CAR-T approaches in B-cell ALL

Outcomes for dual antigen targeting in acute B-cell lymphoblastic leukemia (ALL) may be different from B-cell NHL

219 patients with relapsed/refractory ALL enrolled in clinical trials of single CD19, tandem CD19/CD22, or sequential CD19/CD22 CAR-T

*High-risk defined as complex karyotype, KMT2A rearranged, BCR-ABL1, Ph-like ALL, mutated TP53 or IKZF1

n=6

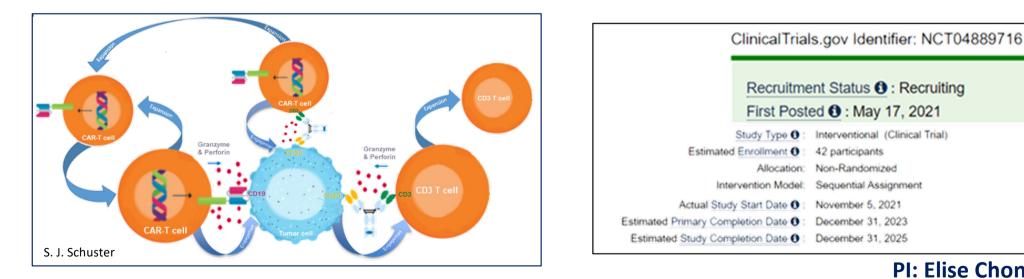
8th POSTGRADUATE

Liu S, et al. Blood Cancer J. 2023;13(1):60.

PI: Elise Chong

Dual antigen targeting by combining CAR-T + BsAb approaches

Active UPenn clinical trial addressing CD19 antigen loss or downregulation


Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD37 CAR-T Cells Followed by Mosunetuzumab or Glofitamab in Relapsed or Refractory DLBCL or Transformed FL

Rationale:

8th POSTGRADUATE

Early administration of CD20:CD3 bispecific antibodies (mosunetuzumab or glofitamab) after CD19-directed CAR-T cell therapy may enhance tumor cytotoxicity by:

- synergistic or additive B cell cytotoxicity via simultaneously targeting two different B cell (tumor) antigens, *i.e.*, CD19 and CD20
- reducing CD19-negative tumor cell escape by targeting a second B cell antigen
- enhancing in vivo expansion of CAR T cells, as observed for T cells in general, after bispecific T cell engaging antibody exposure

T cell exhaustion and hypofunction as mechanisms of resistance to CD19-directed CAR-T cells

Problem netive TCR a) e.g., ibrutinib CD19-T-cell exhaustion/hypofunction mediated by inhibitory CAR T

- 5. Restimulation of CAR-T cells with CD19 peptide mimotopes (peptides that *mimic epitopes of an antigen*)
- 6. Allogeneic CAR-T cells
- TME-induced T cell hypofunction (reversible)

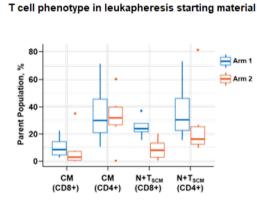
8th POSTGRADUATE

Potential Solutions

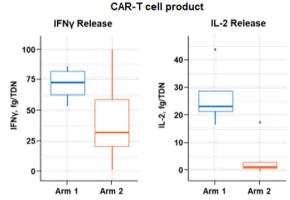
- receptors and ligands in the tumor microenvironment
- peripheral self-tolerance (B cell recovery? late relapses?)

- 1. Combining immunomodulatory drugs with CAR-T cells
- 2. Shorted ex vivo manufacturing time a) e.g., rapcabtagene autoleucel (YTB323)
- 3. Autologous armored CAR T cells
 - a) e.g., IL-18 armored CAR-T cells
- 4. Autologous CAR T cells with alternative receptor costimulatory domains a) e.g., KIR-CAR/Dap12 CAR-T cells

Immunomodulatory drugs to address CAR-T cell exhaustion/hypofunction


• <u>Ibrutinib</u> before apheresis and throughout therapy may improve CAR-T product characteristics and outcomes in relapsed/refractory large B-cell lymphomas: a Phase 1b study

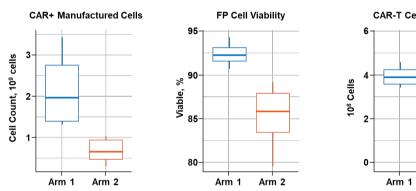
<u>Rationale</u>: ibrutinib is a clinically viable, irreversible inhibitor of ITK that drives a Th1-selective pressure in T cells. Ibrutinib treatment of CLL enhances the generation of CAR-T cells and may improve CAR-T outcomes in CLL.


- Study of ibrutinib + tisagenlecleucel in relapsed/refractory large B-cell lymphomas
- 2 Arms: patients initiated ibrutinib prior to (arm 1) or post apheresis (arm 2)

Patient characteristics

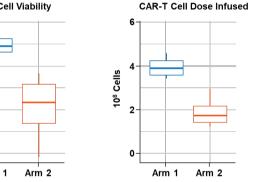
	Arm 1 (N=4)	Arm 2 (N=6)
Age, median, (range)	59 (32-67)	64 (58-76)
Sex		
Male/female	4 (100)/0	4 (67)/2 (33)
ECOG performance status		
0/1	3 (75)/1 (25)	1 (17)/5 (83)
Lines of prior therapy		
2	2 (50)	4 (67)
3	0	2 (33)
4-6	2 (50)	0
Cells of origin of cancer		
Germinal center B-cell type	2 (50)	4 (67)
Activated B-cell type	1 (25)	2 (33)
T-cell/histiocyte-rich	1 (25)	0
Disease stage at study entry		
Stage I	0	0
Stage II	2 (50)	0
Stage III	2 (50)	0
Stage IV	0	6 (100)
Previous autologous HSCT	1 (25)	2 (33)
LDH at screening (U/L), median (range)	198 (146-234)	217 (178-303)

 Arm 1 was associated with an increased percentage of naïve/T_{SCM} cells


Impact of Ibrutinib on T-cell phenotype in apheresis material and final CAR-T product

 Arm 1 final product characterized by preserved production of IFNy (effector cytokine) and increased production of IL-2 (proliferative cytokine) upon antigen-specific stimulation

Chavez ... Schuster: Poster Presentation: ASH 2020


Immunomodulatory drugs to address CAR-T cell exhaustion/hypofunction

Ibrutinib before apheresis and throughout therapy may improve CAR-T product characteristics and • outcomes in relapsed/refractory large B-cell lymphomas: a Phase 1b study

8th POSTGRADUATE

Impact of ibrutinib on CAR-T cell manufacturing

- Arm 1 had higher total CAR+ manufactured cells and higher viability of the final product compared with Arm 2
- The median dose of tisagenlecleucel infused was higher in Arm 1 compared with Arm 2: 3.9 (range, 3.4-4.6) vs 1.7 (range, 1.2-3.0) × 10⁸ CAR+ T cells, respectively

Response rates: Three of 4 patients (75%) in Arm 1 and 2 of 6 patients (33%) in Arm 2 achieved CR

	Patient No.	CAR-T Sell Dose (×108)	CRS, Grade ^a	ICANS, Grade ^a	BOR (Assessment) ^b	PFS, Median (95% CI)
	1	3.4	1	0	CR (Month 6)	
Arm 1	2	3.6	0	0	CR (Month 6)	NE
Arm 1	3	4.1	0	0	PR (Day 28)	(NE-NE)
	4	4.6	0	0	CR* (Month 3)	
	5	2.2	1	0	CR (Month 12)	
	6	1.6	0	0	PD (Day 28)	
	7	1.2	1	0	PD (Day 28)	2.5 months
Arm 2	8	1.4	1	1	PD (Day 28)	(1.0-NE)
	9	1.9	1	0	PD (Month 2)	
	10	3.0	1	0	CR* (Month 6)	

*Two patients responded to ibrutinib alone: Patient No. 4 in Arm 1 and patient No. 10 in Arm 2

Naples,

March 21-22, 2024

Rapid CAR-T cell manufacturing to address CAR-T cell exhaustion/hypofunction

Rapcabtagene autoleucel (YTB323) is an autologous CD19-directed CAR-T cell therapy that is rapidly manufactured (<2 days) using a next-generation manufacturing platform that preserves T-cell stemness
 Dose response

	LD chemo: cyclophosphamide (500 mg/m2/d for		Rapcabtagene Autoleucel Dose Levels							
ՈՈ		3 days) and fludarabine (30 mg/m2/d for 3 days)			Best response rates		DL1 2.5×10 ⁶ (N=4)	DL2 12.5×10 ⁶ (N=30)	DL3 25×10 ⁶ (N=7)	DL4 40×10 ⁶ (N=6)
ŲŲ	FMC63	Dose level 1: 2.5x10 ⁶ CAR-T cells (N=4) Dose level 2: 12.5x10 ⁶ CAR-T cells (N=30), RP2D Dose level 3: 25x10 ⁶ CAR-T cells (N=7)		RP2D CR, patients infused ≥ 28 days before cutoff excluding patients in CR before infusion, n/N (%)			1/2 (50)	19/27 (70)	5/7 (71)	4/6 (67)
	Dose level 4: 40x10 ⁶ CAR-T cells (N=6)				ll response rate, n (%) 5% Cl]		3 (75) [19.4-99.4]	25 (83) [65.3-94.4]	5 (71) [29.0-96.3]	4 (67) [22.3-95.7]
Y		Adverse events of special	intere	Medi st	an follow-up (infusion to cutoff	date) ac		vas 13 months (4.4-3 of respons		
	400	DL2 12.5×10 ⁶	(N=3	60)						
1	4-1BB	CRS , n (%)	11 (3	37)			DL2 12.5×106	(N=	:30)	
		Grade 1/2	9 (30	0)		Median follow-up (range		ge) 16 mo (/	4.4-27.5)	
		Grade 3/4	2 (7	7)				Bel 101110 (-	1.4-27.57	
		Median time to onset, days (range) 8 (1-1		17)		BOR of CR		22/30	(73%)	
- H.	CD3-Z	Median time to resolution, days (range) 6 (2-2		25)		CR at ≥ 3 mo		18/30	(60%)	
		DL2 12.5×10 ⁶		0)						
		ICANS, n (%)	3 (10	(10)		CR at ≥ 6 mo		16/26	(62%)	
		Grade 1/2 1		3) C		CR at ≥ 9 mo		8/19	(42%)	
Barba, et al. ASH 203	22: abstract 439	Grade 3/4	2 (7	')		CP at	- ≥12 mo	8/16	(50%)	
		Median time to onset, days (range)	16 (10	-28)		ch at	212110	0/10	(30%)	

Median DOR (95% CI)

16 mo (10.4-NE)

16 (11-24)

Naples, March 21-22, 2024

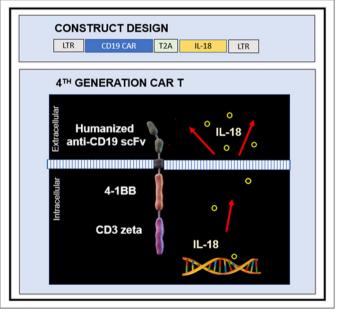
Median time to resolution, days (range)

Cytokine-armored CARs to address CAR-T cell exhaustion/hypofunction

• Active UPenn clinical trial

Phase I trial of huCART19-IL18 cells in patients with relapsed or refractory CD19+ cancers

<u>Rationale</u>: to utilize IL-18 as a pro-inflammatory cytokine to:


• enhance CAR T cell proliferation

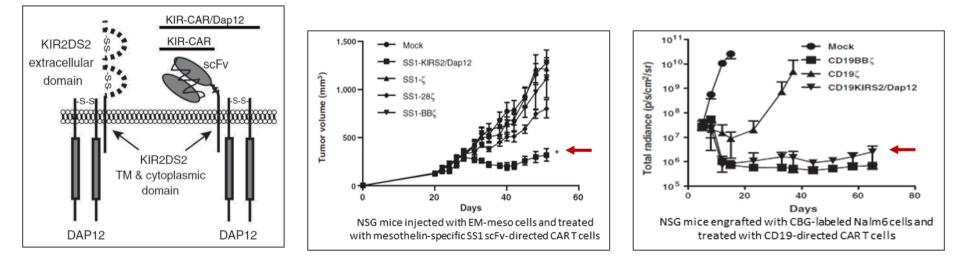
8th POSTGRADUATE

- recruit additional immune cells into the TME to mediate antitumor effects toward tumor cells resistant to CAR T cells
- mitigate the potential impact of CAR T cell exhaustion

Brief Summary		The purpose of this study is to find the maximum dose of huCART19-IL18 cells that is safe for use in humans with CD19+ cancers.					
Detailed Description		Cohort A: Non-Hodgkin Lymphoma (NHL) Cohort B: Chronic Lymphocytic Leukemia (CLL) Cohort C: Acute Lymphoblastic Leukemia (ALL)					
Study Type	ICMJE	Interventional					
Study Phase	ICMJE	Phase 1					
Study Design	ICMJE	Allocation: Interventional Model: Masking: Primary Purpose:	Non-Randomized Parallel Assignment None (Open Label) Treatment				
Condition	ICMJE	Chronic Lymphocytic Non-hodgkin Lympho Acute Lymphoblastic	ma	Treated, so far*: NHL, n = 21			
Recruitment Status	ICMJE	Recruiting					
Enrollment (Estimated) (Submitted: 2023-03-30)	ICMJE	72		CLL, n = 2 ALL, n = 2			
Original Enrollment (Estin (Submitted: 2020-12-21)	nated) ICMJE	30		*January			
Study Start Date (Actual)	ICMJE	2021-05-06					

huCART19-IL18

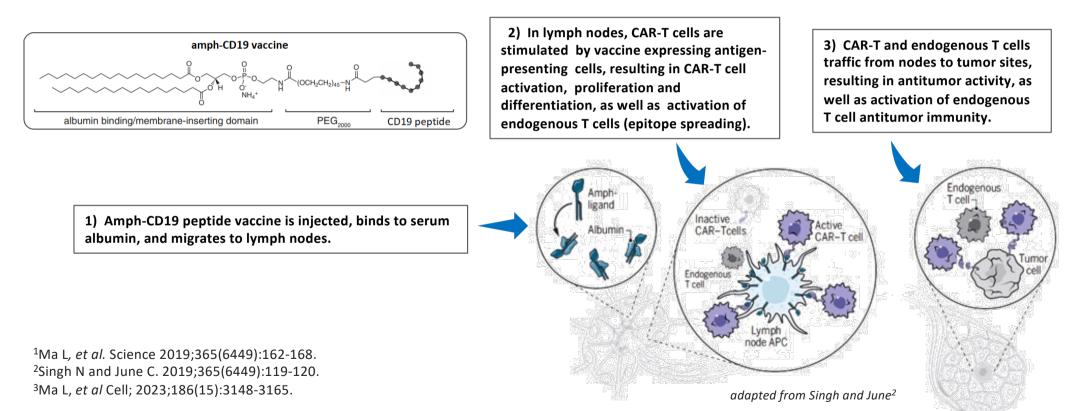
PI: Jakub Svoboda



Alternative CAR costimulatory domains to address CAR-T cell exhaustion/hypofunction

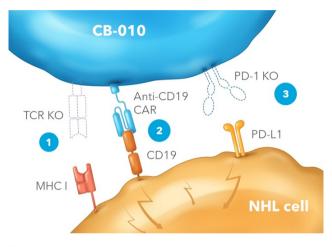
• UPenn clinical trial planned (IND filed)

CD19-directed KIR-CAR/DAP12-modified cells for CD19+ lymphomas


<u>Rationale</u>: KIR-CAR/Dap12 expressing CAR T cells have potent *in vivo* antitumor activity that is resistant to the tumor- and/or TME-induced T-cell hypofunction observed with CD3ζ-based CAR T cells¹. This potent activity *may* be of benefit in large B-cell lymphomas with bulky disease.

¹Moon, et al. Clin Cancer Res 2014;20:4262–73. ²Wang, et al. Cancer Imm Res 2015;3:815-826. (*data show on the right*)

Preclinical work for CD19 completed (manuscript submitted); clinical trial planned


8th POSTGRADUATE

Naples,

March 21-22, 2024

Allogeneic CAR-T cells to address CAR-T cell exhaustion/hypofunction

• **CB-010:** allogeneic anti-CD19 CAR-T cells with PD-1 and TRAC gene knockouts

8th POSTGRADUATE

1 TRAC gene knockout (KO)

• Eliminates TCR, reduces GvHD risk

- CAR site-specific insertion into TRAC locus
 Eliminates random integration
- PD-1 KO for enhanced antitumor activity
 - Reduces CAR-T cell exhaustion

LD: cyclophosphamide (60 mg/kg/d for 2 days)
followed by fludarabine (25 mg/m2/d for 5 days)
Dose level 1: 40x10 ⁶ CAR-T cells (N=8)
Dose level 2: 80x10 ⁶ CAR-T cells (N=5)
Dose level 3: 120x10 ⁶ CAR-T cells (N=3)

Characteristics	Total (N=16)
Median age, years (range)	66 (55-82)
Male, n (%)	14 (88)
ECOG performance status, n (%)	
0	6 (38)
1	10 (62)
Non-Hodgkin lymphoma subtype, n (%)	
LBCL	10 (63)
DLBCL	7 (44)
HGBL	2 (13)
PMBCL	1 (6)
Other B-NHL	6 (38)
MCL	3 (19)
FL	2(13)
MZL	1 (6)
CD19+ disease, n (%)	16 (100)
Prior systemic therapies, median number (range)	2 (1-8)

CB-101	r/r B-NHL
Endpoints N, (%)	All patients (N=16)
Overall response rate (ORR)	15 (94%)
Complete response (CR) rate	11 (69%)
≥6-month CR rate	7 (44%)
CR at longest duration to date	24 months

AEs of special interest	ANTLER dose escalation (N=16)	
	CRS	ICANS
Any grade, N (%)	7 (44%)	4 (25%)
Grade 1	4 (25%)	2 (13%)
Grade 2	3 (19%)	-
Grade 3	-	1 (6%)
Grade 4	-	1 (6%)
Median time to onset, days (range)	3.5 (1,7)	7.5 (5,10)
Median duration, days (range)	3.0 (1,9)	2.0 (1,34)

Phase 1 data, February 2024

